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Abstract A steady flow of electrons in a semiconductor between two parallel plane Ohmic
contacts is studied on the basis of the semiconductor Boltzmann equation, assuming a
relaxation-time collision term, and the Poisson equation for the electrostatic potential. A sys-
tematic asymptotic analysis of the Boltzmann–Poisson system for small Knudsen numbers
(scaled mean free paths) is carried out in the case where the Debye length is of the same
order as the distance between the contacts and where the applied potential is of the same
order as the thermal potential. A system of drift-diffusion-type equations and their boundary
conditions is obtained up to second order in the Knudsen number. A numerical comparison
is made between the obtained system and the original Boltzmann–Poisson system.

Keywords Semiconductor Boltzmann equation · Hilbert expansion · Drift-diffusion
equations · Second-order boundary conditions

1 Introduction

Precise simulations of classical carrier transport in modern semiconductor devices are usu-
ally performed using the semiconductor Boltzmann equation. However, this equation re-
quires large computing times and is therefore inconvenient for the solution of real problems
in semiconductor production mode. Therefore, simpler models have been derived which
focus only on the first few moments of the velocity distribution function. For instance, the
drift-diffusion model [1] comprises the first two moments, whereas the hydrodynamic model
[2] contains three moments and the energy-transport model [3] four moments (see [4, 5] for
a mathematical derivation of the latter model, [6, 7] for the mathematical theory, and [8] for
the numerical discretization). Also higher-order models have been investigated [9, 10].
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The drift-diffusion equations and their variants are the most utilized model in industrial
semiconductor simulations since there exist very efficient numerical schemes and since it
gives reasonable results even in far-from-equilibrium situations for moderate device lengths.
Moreover, higher-order transport models have not been widely accepted as a viable substi-
tute since they are numerically more complex and they contain several transport parameters,
which are not always easy to determine or to fit to Monte-Carlo data.

Besides of the choice of the model equations, the modeling of accurate boundary con-
ditions is another problem which is rarely addressed in the existing literature. Yamnahakki
[11] derived for the drift-diffusion model improved boundary conditions of Robin type, by
considering a correction due to the non-vanishing mean free path. More specifically, he de-
rived a higher-order boundary condition up to first order in the (small) Knudsen number
(i.e., the mean free path scaled by the characteristic length). However, no comparison with
the current density resulting from the solution of the Boltzmann equation has been made.
Improved inflow-type boundary conditions for the kinetic models have been suggested
in [12, 13], but no macroscopic boundary conditions have been derived.

The problem considered by Yamnahakki in [11] is a problem of a one-dimensional elec-
tron flow in a slab (two-surface problem of electrons) on the basis of a semiconductor
Boltzmann equation. This is a classical problem which has been investigated in the physi-
cal [14–19] and mathematical [11] literature. For example, in [14, 15, 18, 19], the feature
of the velocity distribution function peculiar to the ballistic transport has been clarified by
means of a direct numerical simulation of Boltzmann–Poisson systems in n+nn+ structures.
In these analyses, however, the effect of the boundary has been deliberately removed by
making use of a long n+ region. Therefore, the problem including the effect of the boundary
has not been fully solved. On the other hand, [11] provides a complete mathematical theory
of the problem including the kinetic boundary conditions. However, the detailed flow pat-
tern is not given there, since the purpose of the work is to clarify the mathematical structure
of the problem. Further, in order to obtain precise mathematical results, the electric field is
assumed to be given so that only the linear Boltzmann equation has been considered (i.e.,
no Poisson equation).

In this paper, we investigate the two-surface problem of the electron flow by means of a
systematic asymptotic analysis for the small Knudsen numbers. We derive, for the first time,
drift-diffusion-type equations together with their boundary conditions up to second order
in the Knudsen number and compare the results with the direct solution of the Boltzmann–
Poisson system.

Our approach is essentially the same as that used in the work of Yamnahakki to derive the
Robin-type boundary condition mentioned above. In fact, we employ the classical Hilbert
expansion method, which has been applied to the semiconductor Boltzmann equation by
many authors. We refer to [20, 21] as pioneering papers on this subject, and to [22] for
the first construction of the boundary-layer corrections to the transport equation. It should
also be mentioned that the same method is used to derive higher-order boundary condition
for the SHE model and the energy-transport model [23]. In a more physical context, the
Hilbert expansion has been used in connection with the asymptotic analysis of the Boltz-
mann equation for small Knudsen numbers employed in kinetic gas theory, developed by
Sone and co-workers [24–32]. In these works, no external force has been imposed. Recently,
the same asymptotic analysis has been used to investigate a rarefied gas flow between two
parallel plates driven by a uniform external force parallel to the plate [33] on the basis of
the Bhatnagar–Gross–Krook (BGK) model [34–36] of the Boltzmann equation. In this pa-
per, our asymptotic analysis follows those in [24–32], since it provides a systematic way to
investigate the effect of the non-vanishing mean free path on the flow property.
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It should be noted that, in the present study, we make rather strong assumptions in order
to simplify the boundary-value problem and to make numerical comparisons more feasible.
First, we assume that the collision operator is given by a relaxation model similar to the
BGK model. A more general collision term can be employed (see [11]), but a specific choice
has to be made in order to compute the Milne problem arising in the asymptotic analysis.
In addition, more realistic collision operators make the direct solution of the Boltzmann
equation, which is needed for comparison, much more complicate. Second, we consider
the time-independent problem. However, the extension to the time-dependent case can be
done in a straightforward way. Third, for the asymptotic analysis, we assume that the Debye
length is of the same order as the distance between the contacts (or the device length) and
that the applied voltage is of the same order as the thermal potential. The latter condition
is not restricting in practice since the drift-diffusion model gives reasonable results even
for larger applied voltages. However, the former assumption imposes a condition on the
magnitude of the doping profile, which should not be too large. In fact, our results are valid
in or close to the channel region of an n+nn+ diode (where the doping concentration is
indeed small) and could in particular help for the derivation of interface conditions for hybrid
models in which the highly doped regions and the channel region are described by different
models. Finally, we point out again that the Poisson equation has been discarded in the
analysis of Yamnahakki, which results in the absence of the Debye length in the parameter
set.

The paper is organized as follows. After formulating the problem (Sect. 2), we carry out
a systematic asymptotic analysis of the Boltzmann–Poisson system for small Knudsen num-
bers (Sect. 3). We derive a system of fluid-dynamic equations and their boundary conditions
on the contacts up to second order of the Knudsen number. In Sect. 4, we perform a numer-
ical comparison between the solutions of the derived fluid-dynamic systems and the direct
solution of the original Boltzmann–Poisson system on a simple n+nn+ diode which can be
considered as a model for the channel region of a MOS transistor.

2 Formulation of the Problem

2.1 Problem and Basic Assumptions

We consider a semiconductor between two plane Ohmic contacts located at X1 = 0 (con-
tact A) and X1 = L (contact B), where Xi is a rectangular space coordinate system. Let T0

be the temperature of the semiconductor lattice as well as that of the contacts, and let φA and
φB be the electric potentials applied at the contacts A and B , respectively. We investigate the
steady behavior of the electron flow in the X1 direction induced in the semiconductor under
the following assumptions: (i) The behavior of the electrons is described by the semiconduc-
tor Boltzmann equation in the parabolic band approximation, employing a relaxation-time
collision operator. The electrostatic potential is self-consistently computed from the Poisson
equation. (ii) The velocity distribution of the electrons leaving the contact is described by
the corresponding part of the Maxwellian distribution with temperature T0 and zero flow
velocity, fulfilling the charge-neutral condition. In the following, we restrict ourselves to the
following physical situation: (i) The Knudsen number is small. (ii) The Debye length is of
the same order as the distance between the contacts. (iii) The potential difference between
the contacts is of the same order as the thermal potential. Thanks to these assumptions, a
diffusion approximation of the Boltzmann equation can be performed. This approximation
can be made mathematically rigorous; see, e.g., [20, 21].
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2.2 Basic Equations

Let vi be the electron velocity, f (X1, vi) the velocity distribution function of the electrons,
(E(X1),0,0) the electric field, m∗ the effective electron mass, q the elementary charge, and
k the Boltzmann constant. Then, under the parabolic band approximation, the Boltzmann
equation with a relaxation-time collision operator is written for the present stationary one-
dimensional problem as

v1
∂f

∂X1
− q

m∗ E
∂f

∂v1
= 1

τ
(ρM − f ), (1)

where

M = 1

(2πkT0/m∗)3/2
exp

(
− v2

i

2kT0/m∗

)
(2)

is the Maxwellian, ρ = ∫
f d3v the electron number density, τ(X1) is the electron relax-

ation time, and d3v = dv1dv2dv3. The summation convention is employed. Here and in the
following, the integral with respect to vi is carried out over the whole space. The electric
field E is calculated from the electrostatic potential φ(X1) by E = −dφ/dX1, where φ(X1)

solves the Poisson equation

εs

d2φ

dX2
1

= q(ρ − C). (3)

Here, εs is the permittivity of the semiconductor and C(X1) is the doping profile which is
assumed to be smooth.

Under the charge neutral condition, the boundary condition on the contact A (X1 = 0) is
given by

f = C(0)M for v1 > 0, φ = φA, (4)

whereas the boundary condition on the contact B (X1 = L) reads as

f = C(L)M for v1 < 0, φ = φB. (5)

Finally, let us define some macroscopic quantities. Let (J (X1),0,0) denote the electron
current density, (u(X1),0,0) the electron mean velocity, and T (X1) the electron tempera-
ture. They are defined as

J = −qρu = −q

∫
v1f d3v, T = m∗

3kρ

∫
(vi − uδi1)

2f d3v.

2.3 Dimensionless Variables

Let ρ0 and τ0 be, respectively, characteristic values of the electron number density and of
the relaxation time, and let UT = kT0/q be the thermal potential related to the lattice tem-
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perature T0. We introduce the following dimensionless quantities:

xi = Xi

L
, ζi = vi

(2kT0/m∗)1/2
, f̂ = (2kT0/m∗)3/2

ρ0
f,

τ̂ = τ

τ0
, φ̂ = φ

UT

, Ê = E

UT /L
, Ĉ = C

ρ0
, ρ̂ = ρ

ρ0
,

Ĵ = − J

qρ0(2kT0/m∗)1/2
, û = u

(2kT0/m∗)1/2
, T̂ = T

T0
.

Using these dimensionless quantities, the Boltzmann–Poisson system (1–3) becomes

ζ1
∂f̂

∂x1
− 1

2
Ê

∂f̂

∂ζ1
= 2√

π

1

Kn

1

τ̂
(ρ̂M− f̂ ), M = 1

π3/2
exp(−ζ 2

i ), (6)

ρ̂ =
∫

f̂ d3ζ, (7)

λ2 d2φ̂

dx2
1

= ρ̂ − Ĉ, (8)

Ê = − dφ̂

dx1
, (9)

Kn = l0

L
= 2√

π

(2kT0/m∗)1/2τ0

L
, λ = λ0

L
=

√
εsUT

qρ0L2
, (10)

where d3ζ = dζ1dζ2dζ3. Again, here and in the following, the domain of integration with
respect to ζi is the whole space. The dimensionless parameter Kn, which is defined by the
ratio of the mean free path of an electron l0 = (2/

√
π)(2kT0/m∗)1/2τ0 to the distance L be-

tween the contacts, is called the Knudsen number (or scaled mean free path), and represents
the frequency of collisions of an electron with other particles (phonons, impurities etc.). The
dimensionless parameter λ, defined by the ratio of the Debye length λ0 = (εsUT /qρ0)

1/2 of
the semiconductor to the distance L between the contacts, is called the scaled Debye length.
The dimensionless form of the boundary conditions is written as

f̂ = Ĉ(0)M for ζ1 > 0, φ̂ = φ̂A at x1 = 0, (11)

f̂ = Ĉ(1)M for ζ1 < 0, φ̂ = φ̂B at x1 = 1, (12)

where (φ̂A, φ̂B) = (φA/UT , φB/UT ). Finally, the dimensionless macroscopic quantities are
expressed in terms of the dimensionless velocity distribution function as follows:

Ĵ = ρ̂û =
∫

ζ1f̂ d3ζ, (13)

T̂ = 2

3ρ̂

∫
(ζi − ûδi1)

2f̂ d3ζ. (14)

The functions τ̂ (x1) and Ĉ(x1) are specified according to the specific semiconductor
device. Once they are given, the present boundary-value problem is characterized by the
parameters Kn, λ, and φ̂A − φ̂B . In the present study, we investigate the behavior of the
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electron flow for small Knudsen numbers Kn � 1 when both the scaled Debye length λ

and the (dimensionless) potential difference |φ̂B − φ̂A| are of the order one. Incidentally, the
integration of (6) with respect to ζi over the whole space leads to dĴ /dx1 = 0, and therefore,
we have Ĵ = const for all 0 ≤ x1 ≤ 1.

3 Asymptotic Analysis and Fluid-Dynamic Equations

In this section, we carry out an asymptotic analysis of the Boltzmann–Poisson system de-
scribed in the previous section when the scaled Debye length λ and the potential differ-
ence |φ̂B − φ̂A| are of the order of unity. In the course of the analysis, we derive some
drift-diffusion-type equations, coupled with the Poisson equation, as well as their boundary
conditions. In the following, we use ε = (

√
π/2)Kn as a small parameter rather than the

Knudsen number Kn itself.

3.1 Hilbert Solution

First, putting aside the boundary conditions, we look for a solution (f̂H , φ̂H ) to (6–9)
which varies moderately over the distance between the contacts, i.e., ∂f̂H /∂x1 = O(f̂H )

and dφ̂H /dx1 = O(φ̂H ). Such a solution is called the Hilbert solution and is denoted by the
subscript H . We assume that f̂H and φ̂H can be expressed in powers of ε, i.e.,

f̂H = f̂H0 + f̂H1ε + f̂H2ε
2 + · · · , (15)

φ̂H = φ̂H0 + φ̂H1ε + φ̂H2ε
2 + · · · . (16)

Correspondingly, the macroscopic variables h (where h = ρ̂H , ĴH , ûH , or T̂H ) as well as the
electric field ÊH are expanded in ε as

hH = hH0 + hH1ε + hH2ε
2 + · · · , (17)

ÊH = ÊH0 + ÊH1ε + ÊH2ε
2 + · · · . (18)

The relation between f̂Hm and hm is obtained by substituting (15) and (17) into (7, 13),
and (14) with h = hH and f̂ = f̂H and equating the coefficients with the same power of ε.
For h = ρ̂H or ĴH , we find

ρ̂Hm =
∫

f̂Hmd3ζ, (19)

ĴHm =
∫

ζ1f̂Hmd3ζ (m = 0,1, . . .). (20)

We omit the results for ûH and T̂H for conciseness. Similarly, the relation between φ̂Hm

and ÊHm is obtained by substituting (16) and (18) into (9) with Ê = ÊH and φ̂ = φ̂H and
equating the coefficients with the same power of ε. [Here, we keep in mind the property
dφ̂H /dx1 = O(φ̂H ).] Thus, we have

ÊHm = −dφ̂Hm

dx1
(m = 0,1, . . .). (21)
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Since our collision term conserves the number of particles, it holds
∫
(ρ̂HM− f̂H )d3ζ = 0,

and hence, ∫
(ρ̂HmM− f̂Hm)d3ζ = 0 (m = 0,1, . . .). (22)

Substituting (15, 17) (with h = ρ̂), and (18) into (6) and taking into account the property
∂f̂H /∂x1 = O(f̂H ) gives the following expressions for f̂Hm:

f̂H0 = ρ̂H0M, (23)

f̂Hm = ρ̂HmM− τ̂

(
ζ1

∂f̂Hm−1

∂x1
− 1

2

m−1∑
n=0

ÊHn

∂f̂Hm−n−1

∂ζ1

)
(m ≥ 1). (24)

Equation (22) provides the compatibility conditions for (24), i.e.,

0 =
∫ (

ζ1
∂f̂Hm−1

∂x1
−

m−1∑
n=0

ÊHn

2

∂f̂Hm−n−1

∂ζ1

)
d3ζ = d

dx1

∫
ζ1f̂Hm−1d

3ζ (m ≥ 1). (25)

When we use in (25) the explicit expressions for f̂Hn (n = 0,1, . . .) in terms of ρ̂Hs (s ≤ n)
and ÊHs (s ≤ n−1), which are obtained successively from (23) and (24), we derive ordinary
differential equations for ρ̂Hn and ÊHn, called here fluid-dynamic equations.

Furthermore, when we substitute (16) and (17) (with h = ρ̂) into (8) with φ̂ = φ̂H and
ρ̂ = ρ̂H and take into account the property dφ̂H /dx1 = O(φ̂H ) as well as λ = O(1), we
obtain the following sequence of equations:

λ2 d2φ̂H0

dx2
1

= ρ̂H0 − Ĉ, λ2 d2φ̂Hm

dx2
1

= ρ̂Hm (m ≥ 1).

These equations are coupled with the fluid-dynamic equations through (21).
In this paragraph, we summarize the systems of fluid-dynamic equations. First, we note

that (23) and (20) imply that ĴH0 = 0. Therefore, (25) for m = 1 [with (20)] does not give any
condition for the macroscopic quantities. Equation (25) for m ≥ 2, together with the explicit
expression for ĴHm (m ≥ 1), gives the following fluid-dynamic equations: for m = 0,

d

dx1
ĴH1 = 0, (26a)

ĴH1 = −1

2
τ̂

(
dρ̂H0

dx1
+ ρ̂H0ÊH0

)
, (26b)

ÊH0 = −dφ̂H0

dx1
, λ2 d2φ̂H0

dx2
1

= ρ̂H0 − Ĉ, (26c)

for m = 1,

d

dx1
ĴH2 = 0, (27a)

ĴH2 = −1

2
τ̂

(
dρ̂H1

dx1
+ ρ̂H1ÊH0 + ρ̂H0ÊH1

)
, (27b)

ÊH1 = −dφ̂H1

dx1
, λ2 d2φ̂H1

dx2
1

= ρ̂H1, (27c)
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and for m = 2,

d

dx1
ĴH3 = 0, (28a)

ĴH3 = −1

2
τ̂

(
dρ̂H2

dx1
+ ρ̂H0ÊH2 + ρ̂H1ÊH1 + ρ̂H2ÊH0

)
+ τ̂

d

dx1
(τ̂ ÊH0)ĴH1, (28b)

ÊH2 = −dφ̂H2

dx1
, λ2 d2φ̂H2

dx2
1

= ρ̂H2. (28c)

Equations (26a–26c) are the well-known drift-diffusion equations for the leading-order
quantities ρ̂H0, ÊH0, and φ̂H0. Equations (27a–27c) for the variables ρ̂H1, ÊH1, and φ̂H1

also correspond to a drift-diffusion model, since they can be obtained from a drift-diffusion
system (with the mobility given by μ = qτ/m∗) by means of the expansion corresponding
to (15–18). However, the next-order equations (28a–28c) for the variables ρ̂H2, ÊH2, and
φ̂H2 do not constitute a drift-diffusion model due to the last term in (28b).

The presence of the last term in (28b) can be understood in the following way. Suppose
that the first order current density (or the particle flux) ĴH1 has been established. Since
each electron is accelerated by the electric field and acquires a momentum, the particle
flux ĴH1 also introduces a momentum flux. The contribution of these electrons, accelerated
by ÊH0 during the period of the order of the relaxation time τ̂ (or the mean free time), to
the momentum flux is counted to be proportional to τ̂ ÊH0ĴH1. Therefore, if its gradient
[cf. the last term of (28b)] is not zero, there is a net accumulation of the momentum at a
point under consideration, resulting in a force exerted on the fluid. Consequently, a current
flow is induced.

Using the explicit expressions for f̂Hm, we readily obtain the equations for the mean
flow velocity ûHm and the electron temperature T̂Hm. The results up to m = 3 are given in
Appendix 1.

3.2 Knudsen Layers and Boundary Conditions for Fluid-Dynamic Equations

In this section we derive the boundary conditions for the fluid-dynamic equations. Suppose
that ρ̂H0 and φ̂H0 take the following values on the boundary:

ρ̂H0 = Ĉ(0), φ̂H0 = φ̂A at x1 = 0, (29)

ρ̂H0 = Ĉ(1), φ̂H0 = φ̂B at x1 = 1. (30)

With this choice of values, the leading-order velocity distribution function f̂H0 (23) and
the leading-order electrostatic potential φ̂H0 satisfy the boundary conditions (11) and (12).
Therefore, (29) and (30) give consistent boundary conditions for the leading-order fluid-
dynamic equations (26a–26c). For the higher-order quantities, however, the Hilbert solution
does not have enough freedom to satisfy the boundary conditions. Therefore, we need to
introduce a so-called Knudsen-layer correction near the boundary.

From now on, we seek the solution in the form

f̂ = f̂H + f̂K, (31)

φ̂ = φ̂H + φ̂K, (32)

where (f̂K, φ̂K), which is called the Knudsen-layer part, is the correction to the Hilbert
solution (f̂H , φ̂H ) appreciable only in thin layers of thickness of order ε (or of the mean
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free path in the dimensional X1 variable) adjacent to the boundary. In order to analyze the
Knudsen layers near x1 = 0 and x1 = 1 simultaneously, it is convenient to introduce the
following new variables:

y = x1, η = y/ε, ζy = ζ1 around x1 = 0,

y = 1 − x1, η = y/ε, ζy = −ζ1 around x1 = 0.

Here, y, whose origin is on the boundary, is the coordinate normal to the boundary pointing
to the semiconductor, η is the stretched coordinate normal to the boundary, and ζy is the
component of ζ1 in the positive y direction. We assume that the length scale of variation of
(f̂K, φ̂K) is of the order ε, i.e.,

f̂K = f̂K(η, ζy, ζ2, ζ3), φ̂K = φ̂K(η), (33)

or ∂f̂K/∂η = O(f̂K) and dφ̂K/dη = O(φ̂K), and that (f̂K, φ̂K) vanishes rapidly as η → ∞.
We further suppose that (f̂K, φ̂K) is expanded in ε as

f̂K = f̂K1ε + f̂K2ε
2 + · · · , (34)

φ̂K = φ̂K1ε + φ̂K2ε
2 + · · · . (35)

Corresponding to (31, 32, 34), and (35), the macroscopic quantity h (where h = ρ̂, Ĵ , û,
or T̂ ) and the electric field Ê are expressed as

h = hH + hK, (36)

Ê = ÊH + ÊK, (37)

with

hK = hK1ε + hK2ε
2 + · · · , (38)

ÊK = ÊK0 + ÊK1ε + ÊK2ε
2 + · · · . (39)

Here, the expansion of ÊK starts from order ε0 for the following reason. If we substitute
(32) and (37) into (9) and take into account that ÊH and φ̂H solve the equation, we obtain

ÊK = ∓1

ε

dφ̂K

dη
, (40)

where the minus (plus) sign corresponds to the Knudsen layer around x1 = 0 (x1 = 1). This
convention is used throughout the paper. Since φ̂K = O(ε) and dφ̂K/dη = O(φ̂K) [see the
sentence that contains (33)], we conclude that ÊK = O(1) and therefore, the ÊK0 term in
the expansion (39) is not zero.

Substituting the expansions (35) and (39) into (40) and equating the coefficients of the
same power of ε yields the following expression of ÊKm in terms of φ̂Km:

ÊKm−1 = ∓dφ̂Km

dη
(m ≥ 1). (41)

In order to obtain the relation between hKm and f̂Km, we substitute (31) [with (15)
and (34)] and (36) [with (17) and (38)] into (7, 13), and (14) and take into account the
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relation between hHm and f̂Hm [e.g., (19, 20)]. Thus, for ρ̂Km and ĴKm, we obtain the ex-
pressions

ρ̂Km =
∫

f̂Kmd3ζ̄ , ĴKm =
∫

ζ1f̂Kmd3ζ̄ , (42)

where d3ζ̄ = dζydζ2dζ3. We omit the result for ûKm and T̂Km for briefness.
To derive the equations for (f̂K, φ̂K ), we substitute (31, 32) and (36) (with h = ρ̂) to-

gether with their expansions into (6) [with (9)] and (8), and use the Taylor expansion
for (f̂H , φ̂H ) and τ̂ near the boundary. This yields a sequence of equations for (f̂Km,

φ̂Km) (m ≥ 1). On the other hand, the boundary conditions for (f̂Km, φ̂Km) are derived
from the requirements (f̂Hm)B + (f̂Km)B = 0 (for ζy > 0) and (φ̂H )B + (φ̂Km)B = 0 on
the boundary, where ( · )B denotes the value on the boundary. Furthermore, the condition
(f̂Km, φ̂Km) → (0,0) as η → ∞ needs to be imposed. In the following, we present the ex-
plicit equations and boundary conditions for (f̂K1, φ̂K1) and (f̂K2, φ̂K2) thus obtained:

ζy

∂f̂Km

∂η
+ 1

2

dφ̂Km

dη

∂

∂ζy

(f̂H0)B = 1

(τ̂ )B
(ρ̂KmM− f̂Km) + Im, (43)

λ2 d2φ̂Km

dη2
= 0, (44)

f̂Km = −M
[
(ρ̂Hm)B + Lm

]
(for ζy > 0), (45)

φ̂Km = −(φ̂Hm)B (46)

at η = 0, and

f̂Km → 0, φ̂Km → 0 (47)

as η → ∞. Here, m = 1,2, and Im and Lm are given by

I1 = 0, (48a)

I2 = −1

2

(
dφ̂H0

dy

)
B

∂f̂K1

∂ζy

+ dφ̂K1

dη

∂

∂ζy

[
(f̂H1)B +

(
df̂H0

dy

)
B

η + f̂K1

]

− 1

(τ̂ )2
B

(
dτ̂

dy

)
B

η(ρ̂K1M− f̂K1), (48b)

L1 = 2(J̃H1)Bζy, (48c)

L2 = 2(J̃H2)Bζy + 2(τ̂ )B

(
dφ̂H0

dy

)
B

(J̃H1)B

(
ζ 2
y − 1

2

)
, (48d)

where

J̃H1 = −1

2
τ̂

(
dρ̂H0

dy
− ρ̂H0

dφ̂H0

dy

)
, (49)

J̃H2 = −1

2
τ̂

(
dρ̂H1

dy
− ρ̂H0

dφ̂H1

dy
− ρ̂H1

dφ̂H0

dy

)
. (50)

We observe that the equations and boundary conditions for φ̂Km (m = 1,2), i.e., (44, 46),
and (47), are in closed form. Therefore, we first consider the problem for φ̂Km. We claim
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that (φ̂Hm)B vanishes. Indeed, integrating (44) and employing the condition (47), we find
φ̂Km = 0 for all η ≥ 0. Therefore, in order for the boundary-value problem to have a solution,
(φ̂Hm)B in (46) must satisfy (φ̂Hm)B = 0 (m = 1,2). This gives the boundary condition for
the second equation in (27c) and (28c). Moreover, it implies, by (41) that ÊK0 = ÊK1 = 0.

Next, we consider the problem for f̂Km (m = 1,2). Let us introduce the following vari-
ables:

�Km = f̂Km

M
, η′ = η

(τ̂ )B
, y ′ = y

(τ̂ )B
.

Then the equation and boundary conditions for f̂Km, (43, 45, 47), can be transformed into

ζy

∂�Km

∂η′ = ρ̂Km − �Km + Im, (51)

�Km = −(ρ̂Hm)B +Lm (for ζy > 0, at η′ = 0), (52)

�Km → 0 (as η′ → ∞), (53)

where

I1 = 0, (54a)

I2 = −1

2

(
dφ̂H0

dy ′

)
B

(
∂�K1

∂ζy

− 2ζy�K1

)
− 1

(τ̂ )B

(
dτ̂

dy ′

)
B

η′(ρ̂K1 − �K1), (54b)

L1 = −2(J̃H1)Bζy, (54c)

L2 = −2(J̃H1)Bζy − 2

(
dφ̂H0

dy ′

)
B

(J̃H1)B

(
ζ 2
y − 1

2

)
. (54d)

Equations (51–53) form a one-dimensional boundary-value problem (half-space problem) of
the linear semiconductor Boltzmann equation with a relaxation-time collision operator. The
problem is also called the Milne problem. Concerning the problem with more general Im

and Lm, the following statements holds: (i) For a given function Im(η′, ζy, ζ2, ζ3) which sat-
isfies

∫
ImMd3ζ̄ = 0 and Im → 0 (rapidly) as η′ → 0 and a given function Lm(η′, ζy, ζ2, ζ3),

the solution �Km is determined together with the constant (ρ̂Hm)B contained in the bound-
ary condition (52). (ii)

∫
ζy�KmMd3ζ̄ = 0 holds [this is obvious from (51) and (53)]. The

boundary value (ρ̂Hm)B thus determined gives the boundary condition for the fluid-dynamic
equations (27a, b), (28a), and (28b). We mention that the property of the half-space problem
described above has been proved for the linear semiconductor Boltzmann equation with a
general collision operator in the homogeneous case (i.e., Im = 0) in [20]. It follows from (ii)
and (42) that ĴKm = 0 for m = 1,2.

In view of the expressions for Im and Lm, we can seek the solutions �K1 and �K2 in the
form [

�K1

(ρ̂H1)B

]
=

[
ψ1

ξ1

]
(J̃H1)B, (55)

[
�K2

(ρ̂H2)B

]
=

[
ψ2a

ξ2a

]
(J̃H2)B −

[
ψ2b

ξ2b

](
dφ̂H0

dy ′

)
B

(J̃H1)B

+
[

ψ2c

ξ2c

]
1

(τ̂ )B

(
dτ̂

dy ′

)
B

(J̃H1)B, (56)
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where ξ1, ξ2a , ξ2b , and ξ2c are constants to be determined together with the solutions. Each
problem is analyzed numerically to determine (ξα,ψα) (α = 1,2a,2b,2c). We refer to Ap-
pendix 2 for a brief comment on the numerical solution of this problem. Once we obtain
(ξα,ψα) and thus �K1 and �K2, the Knudsen-layer parts of the electron number density, the
mean flow velocity, and the electron temperature are readily calculated.

Before presenting the boundary conditions and the Knudsen-layer parts of the fluid-
dynamic equations (26a–28c), we comment on the second-order Knudsen-layer part of the
electric field ÊK2. Since ÊK2 is determined by φ̂K3 [see (41) with m = 3], we need some
information from the Knudsen-layer problem of order ε3 in order to obtain ÊK2. Namely,
the Knudsen-layer equation for φ̂K3 is given by

λ2 d2φ̂K3

dη2
= ρ̂K1.

Since ρ̂K1 is already known from the lower order Knudsen-layer problem, integration of the
above equation under the boundary condition φ̂K3 → 0 (as η → ∞) yields an expression
of dφ̂K3/dη. Then, (41) for m = 3 immediately gives the desired formula for ÊK2. Inci-
dentally, the integration of the Knudsen-layer equation for f̂K3 with respect to (ζy, ζ2, ζ3)

over the whole space yields ĴK3 = ∫
ζ1f̂K3dζ̄ = 0. This relation (and the relation between

ûK3 and f̂K3) is used to derive the expression of ûK3 given in (61b) below. In general,
from the analysis of the Knudsen-layer problem for (f̂Km, φ̂Km), we obtain the boundary
values (ρ̂Hm)B and (φ̂Hm)B and the Knudsen-layer parts of φ̂Km, hKm (h = ρ̂, Ĵ , û, or T̂ ),
and ÊKm−1.

Finally, we summarize the boundary conditions for the fluid-dynamic equations and the
computed Knudsen-layer parts. The boundary conditions for (27a–28c) are given by

(ρ̂H1)B = ξ1(J̃H1)B, (φ̂H1)B = 0, (57)

(ρ̂H2)B = ξ2a(J̃H2)B − ξ2b(τ̂ )B

(
dφ̂H0

dy

)
B

(J̃H1)B + ξ2c

(
dτ̂

dy

)
B

(J̃H1)B,

(58)
(φ̂H2)B = 0,

where the numerical values of the slip coefficients ξ1, ξ2a , ξ2b , and ξ2c are given by
ξ1 = ξ2a = −2.03238284, ξ2b = 1.03264500, and ξ2c = 0. The Knudsen-layer parts are as
follows. For m = 0 we have ÊK0 = 0; for m = 1, φ̂K1 = ÊK1 = ĴK1 = ûK1 = 0,

ρ̂K1 = �1(η
′)(J̃H1)B, (59a)

T̂K1 = −1

3

(J̃H1)B

(ρ̂H0)B
�1(η

′), (59b)

for m = 2,

ρ̂K2 = �1(η
′)(J̃H2)B − [�2(η

′) + �3(η
′)](τ̂ )B

(
dφ̂H0

dy

)
B

(J̃H1)B

+ �4(η
′)
(

dτ̂

dy

)
B

(J̃H1)B, (60a)

T̂K2 = − 1

3(ρ̂H0)B

{
�1(η

′)(J̃H2)B −
[
�2(η

′) + �3(η
′) −

∫ ∞

η′
�1(s)ds

]
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× (τ̂ )B

(
dφ̂H0

dy

)
B

(J̃H1)B + �4(η
′)
(

dτ̂

dy

)
B

(J̃H1)B

−
[
(ρ̂H1)B + (τ̂ )B

(
dρ̂H0

dy

)
B

η′ + �1(η
′)(J̃H1)B

]
(J̃H1)B

(ρ̂H0)B
�1(η

′)
}
, (60b)

ûK2 = −�1(η
′)(ûH1)B(J̃H1)B/(ρ̂H0)B, (60c)

ÊK2 = ± (τ̂ )B

λ2
(J̃H1)B

∫ ∞

η′
�1(s)ds, (60d)

φ̂K2 = ĴK2 = 0, (60e)

and finally, for m = 3,

ĴK3 = 0, (61a)

ûK3 = −�1(η
′)

(ûH1)B

(ρ̂H0)B

{
(J̃H2)B −

[
(ρ̂H1)B

(ρ̂H0)B
− (ûH2)B

(ûH1)B
+ 2(τ̂ )B

(
d ln ρ̂H0

dy

)
B

η′
]
(J̃H1)B

}

+ [�2(η
′) + �3(η

′)](τ̂ )B

(
dφ̂H0

dy

)
B

(ûH1)B

(ρ̂H0)B
(J̃H1)B

− �4(η
′)
(

dτ̂

dy

)
B

(ûH1)B

(ρ̂H0)B
(J̃H1)B + (ûH1)B

[
(J̃H1)B

(ρ̂H0)B
�1(η

′)
]2

. (61b)

The values of the so-called Knudsen-layer functions �m(η′) (m = 1,2,3,4) as well as those
of the integral

∫ ∞
η′ �1(s)ds are displayed in Table 1.

4 Numerical Simulation of the Electron Flow in an n+nn+ Diode
for Small Knudsen Numbers

In this section, we consider an electron flow induced in a semiconductor with a doping
profile corresponding to a one-dimensional n+nn+ diode. We make a numerical compari-
son between the asymptotic solution of the fluid-dynamic system obtained in the previous
section and the direct numerical solution of the Boltzmann–Poisson system.

4.1 Comments on the Numerical Method

The similarity between the present relaxation-time semiconductor Boltzmann equation
and the Boltzmann equation for rarefied gases with relaxation collision terms, like the
BGK model [34–36], allows us to employ numerical techniques developed for the BGK-
Boltzmann equation in order to solve the semiconductor problem. For example, we can
eliminate the independent variables ζ2 and ζ3 from the system (see [37]). For this, let us
introduce a function (the so-called marginal velocity distribution function) G(x1, ζ1) by

G(x1, ζ1) =
∫ ∞

−∞

∫ ∞

−∞
f̂ dζ2dζ3.

Integrating (6) with respect to ζ2 and ζ3 over the whole range of the variables gives a system
of equations for (G, φ̂). The corresponding boundary conditions for G are obtained from (11)
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Table 1 Knudsen-layer functions. The Knudsen-layer functions generally have the singularity η′ lnη′ at η′ =
0. Their coefficients are also shown

η′ �1 −�2 �3 �4
∫ ∞
η′ �1(s)ds

0.00 0.61817 1.09553 0.78144 0.00000 0.46736

0.05 0.51453 0.96234 0.68806 0.00174 0.43948

0.10 0.45655 0.87923 0.62444 0.00492 0.41529

0.20 0.37755 0.75753 0.52794 0.01288 0.37386

0.40 0.28006 0.59357 0.39526 0.02996 0.30898

0.60 0.21858 0.48163 0.30500 0.04557 0.25951

0.80 0.17546 0.39864 0.23931 0.05876 0.22034

1.00 0.14349 0.33441 0.18975 0.06948 0.18859

1.20 0.11895 0.28333 0.15152 0.07790 0.16245

1.40 0.09965 0.24193 0.12154 0.08429 0.14066

1.60 0.08418 0.20788 0.09776 0.08892 0.12234

1.80 0.07160 0.17956 0.07874 0.09205 0.10680

2.00 0.06127 0.15580 0.06341 0.09392 0.09355

2.50 0.04235 0.11103 0.03657 0.09440 0.06799

3.00 0.02996 0.08056 0.02041 0.09079 0.05012

4.00 0.01574 0.04413 0.00464 0.07770 0.02813

5.00 0.00867 0.02512 −0.00097 0.06263 0.01631

6.00 0.00494 0.01471 −0.00263 0.04878 0.00969

8.00 0.00173 0.00537 −0.00242 0.02798 0.00361

10.00 0.00065 0.00208 −0.00148 0.01543 0.00142

12.00 0.00026 0.00084 −0.00082 0.00835 0.00059

coeff. of η′ lnη′ 0.79788 0.81080 0.40540 0 0

and (12) in a similar way. The resulting system for (G, φ̂) is given by

ζ1
∂G
∂x1

− 1

2
Ê

∂G
∂ζ1

= 2√
πKn

1

τ̂

(
ρ̂e−ζ 2

1

π1/2
− G

)
, ρ̂ =

∫ ∞

−∞
Gdζ1, (62)

λ2 d2φ̂

dx2
1

= ρ̂ − Ĉ, Ê = − dφ̂

dx1
, (63)

with the boundary conditions

G = Ĉ(0)

π1/2
exp(−ζ 2

1 ) for ζ1 > 0, φ̂ = φ̂A at x1 = 0, (64)

G = Ĉ(1)

π1/2
exp(−ζ 2

1 ) for ζ1 < 0, φ̂ = φ̂B at x1 = 1. (65)

The system (62–65) is solved numerically by a finite difference method similar to that used
in [38] but including an additional step to solve the Poisson equation.

It should be noted that T̂ cannot be expressed in terms of G alone [cf. (14)]. In order
to compute T̂ , we introduce, in addition to G, the marginal velocity distribution function
H = ∫ ∞

−∞
∫ ∞

−∞(ζ 2
2 + ζ 2

3 )f̂ dζ2ζ3. The equation and the boundary conditions for H are ob-
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Fig. 1 (a) The doping profile C.
(b) The doping profile C

normalized by Nd with
Nc/Nd = 0.2, D/L = 0.25 (solid
line); Nc/Nd = 0.2, D/L = 0.1
(dash-dotted line); Nc/Nd = 0.1,
D/L = 0.25 (dashed line)

tained in the same way as those for G. It turns out that the form of the equation and bound-
ary condition for H coincides with that for G, and therefore, H = G holds. Thus, we can
compute T̂ from the solution G.

4.2 Numerical Results

The semiconductor device is specified by the doping profile C(X1) and the relaxation
time τ(X1). We choose

C(X1) = Nd + Nd − Nc

2

[
tanh

(
40

X1 − L + D

L

)
− tanh

(
40

X1 − D

L

)]
,

[see Fig. 1(a)] modeling an n+nn+ diode. Here, the positive constants Nd , Nc (< Nd), and
D(< L/2) denote the doping concentration of the highly doped (n+) region, that of the
channel (n) region, and the position of the junctions (the doping profile is symmetric with
respect to X1 = L/2), respectively. The relaxation time is assumed to be constant, τ = τ0,
such that τ̂ = 1.
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Fig. 2 The solution ρ̂H0, ÊH0, and φ̂H0 for various applied potentials φapp with Nc/Nd = 0.2,
D/L = 0.25, and (a) λ = 1, (b) λ = 0.5

We take Nd as the reference value of the electron number density, i.e., ρ0 = Nd (see the
first sentence of Sect. 2.3). The present problem is then characterized by the following pa-
rameters: Kn, λ, (φB − φA)/UT , φB/UT , Nc/Nd , and D/L. For convenience, we introduce
φapp = φB − φA.

We first present some numerical results for a doping profile with Nc/Nd = 0.2 and
D/L = 0.25 [the solid line in Fig. 1(b)]. Figures 2–4 show the solutions of the fluid-dynamic
equations (26a–28c) under the boundary conditions (29, 30, 57), and (58) for various values
of φapp and for λ = 1 and λ = 0.5.

Once we obtain ρ̂Hm, ÊHm, and φ̂Hm, the asymptotic solution is readily obtained
from (36, 37, 32, 17, 18, 16, 38, 39), and (35) by specifying ε (or Kn). The result
is shown in Figs. 5 and 6 for φapp/UT = 1 and 3 in the cases λ = 1 (Fig. 5) and
λ = 0.5 (Fig. 6), where the asymptotic solution of u (up to order Kn3) and that of T
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Fig. 3 The solution ρ̂H1, ÊH1, and φ̂H1 for various applied potentials φapp with Nc/Nd = 0.2,
D/L = 0.25, and (a) λ = 1, (b) λ = 0.5

(up to order Kn2) are also included [the corresponding Hilbert solutions are obtained from
ρ̂Hm and ÊHm (m = 0,1,2) with the aid of the formulas given in Appendix 1]. In Figs. 5 and
6, the direct numerical solutions of the original Boltzmann–Poisson system (6–9, 11–12) are
also shown.

The numerical results show that the asymptotic solutions are in good agreement with
the direct numerical solutions of the Boltzmann–Poisson system. However, there are some
appreciable differences in the case Kn = 0.1. The difference increases with the applied po-
tentials φapp and is more pronounced at the right boundary. This can be explained as follows.

First, the values of ρ̂H1 and ρ̂H2 as well as their gradients near X1 = L are increasing
in φapp/UT . This results in a large value of ûH2 and ûH3 [see (68) and (69)]. Second, the
second-order Knudsen-layer correction contains product terms depending on (dφ̂H0/dy)B,
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Fig. 4 The solution ρ̂H2, ÊH2, and φ̂H2 for various applied potentials φapp with Nc/Nd = 0.2,
D/L = 0.25, and (a) λ = 1, (b) λ = 0.5

(J̃H1)B, and (ûH1)B which are increasing in φapp/UT . Therefore, the Knudsen-layer part for
Kn = 0.1 is not well confined near the boundary.

In Figs. 7 and 8, the current-voltage characteristics obtained from the asymptotic so-
lutions are compared with those obtained from the numerical solution of the Boltzmann–
Poisson system for various Kn at two values of λ, i.e., λ = 1 and 0.5. For the doping profile
we choose again Nc/Nd = 0.2 and D/L = 0.25.

In the figures, we have included not only the asymptotic solution up to the order Kn3,
i.e. Ĵ (3) = ĴH1ε + ĴH2ε

2 + ĴH3ε
3, but also the asymptotic solutions up to first and sec-

ond order, Ĵ (1) = ĴH1ε and Ĵ (2) = ĴH1ε + ĴH2ε
2, for comparison. Ĵ (1) and Ĵ (2) correspond

to the current densities obtained from the conventional drift-diffusion system by applying
the non-slip boundary condition and the boundary condition derived by Yamnahakki, re-
spectively. As seen from the figures, the current density Ĵ (3) gives a result much closer to
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Fig. 5 The profiles of the electron density ρ, electric field E, electrostatic potential φ, mean flow velocity u,
and electron temperature T for Kn = 0.1, 0.05, and 0.02 with λ = 1, Nc/Nd = 0.2, and D/L = 0.25. The
solid line indicates the asymptotic solution up to order Kn2 (up to order Kn3 in the case of u), and the dashed
lines indicate the corresponding numerical solutions of the original Boltzmann–Poisson system
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Fig. 6 The profiles of the electron density ρ, electric field E, electrostatic potential φ, mean flow velocity u,
and electron temperature T for Kn = 0.1, 0.05, and 0.02 with λ = 0.5, Nc/Nd = 0.2, and D/L = 0.25. See
the caption of Fig. 5
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Fig. 7 Current density J versus
applied potential φapp for various
Kn with λ = 1, Nc/Nd = 0.2,
and D/L = 0.25. The asymptotic
solutions up to order Kn3 (solid
line), Kn2 (dashed line), and Kn
(dash-dotted line) are shown. The
direct numerical solution of the
Boltzmann–Poisson system is
indicated by the symbol “◦”. The
line J = 0 is also shown for
convenience
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Fig. 8 Current density J versus
applied potential φapp for various
Kn with λ = 0.5, Nc/Nd = 0.2,
and D/L = 0.25. See the caption
of Fig. 7
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Fig. 9 The profiles of the electron density ρ, electric field E, electrostatic potential φ for Kn = 0.1, 0.05,
and 0.02 with λ = 1, Nc/Nd = 0.2, and D/L = 0.1. The solid line indicates the asymptotic solution up to
the order Kn2 and the dashed line the numerical solution of the original Boltzmann–Poisson system

the current-voltage characteristic obtained from the Boltzmann–Poisson system than Ĵ (1)

and Ĵ (2). The range of the applied potential where Ĵ (3) agrees well becomes larger when
the Knudsen number becomes smaller. This is explained as follows. When the applied po-
tential is increased, some electrons acquire velocities much faster than the thermal velocity
in the direction parallel to the electric field, due to the strong electric field, resulting in
long free paths. Therefore, for a large applied potential, the effective Knudsen number is no
longer small, and the drift-diffusion approximation loses its accuracy. This effect is less pro-
nounced for the small Knudsen numbers, since the effective Knudsen number remains small
even when a large applied potential is applied. Hence, the range of applied potentials in
which the drift-diffusion systems are accurate becomes larger for smaller Knudsen number.
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Fig. 10 The profiles of the electron density ρ, electric field E, electrostatic potential φ, mean flow velocity u,
and electron temperature T for Kn = 0.1, 0.05, and 0.02 with λ = 0.2, Nc/Nd = 0.2, and D/L = 0.25. See
the caption of Fig. 5
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Fig. 11 Current density J versus
applied potential φapp for various
Kn with λ = 0.2, Nc/Nd = 0.2,
and D/L = 0.25. See the caption
of Fig. 7
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We recall here that the present asymptotic analysis assumes the magnitude of the applied
potential of the order of the thermal potential, i.e., φapp/UT = O(1). The present results
show that the derived drift-diffusion-type equations are accurate even for larger applied po-
tentials, and thus can be used as a practical tool for computing the current density. On the
other hand, we noticed that the curve corresponding to Ĵ (2) becomes negative when the
applied voltage becomes large. The use of the Yamnahakki’s boundary condition, without
including the terms up to second order in the Knudsen number, may result in a serious error
in practice, when a large applied potential is applied.

Next, we show some results for a different doping profile. In Fig. 9, we show the as-
ymptotic solution of (ρ, E, φ) up to order Kn2, together with the corresponding numerical
solution of the Boltzmann–Poisson system, for various values of Kn with (Nc/Nd,D/L)

= (0.2,0.1) [the dash-dotted line in Fig. 1(b)] in the case λ = 1. The dependence of these
quantities on D/L is rather weak except for the electric field E, whose profile clearly de-
pends strongly on the position of the junctions given by D/L. The asymptotic solutions
u (up to order Kn3) and T (up to order Kn2) as well as the Boltzmann–Poisson solutions,
computed with the parameters used in Fig. 9 are similar to those presented in Fig. 5. We also
made a numerical comparison for (Nc/Nd,D/L) = (0.1,0.25) [the dashed line in Fig. 1(b)].
The result is also similar to that shown in Fig. 5.

Finally, we show some results when λ is relatively small. Figure 10 shows the asymptotic
solution of (ρ, E, φ, u, T ) (up to order Kn2 for ρ, E, φ, and T , and up to order Kn3

for u), as well as the Boltzmann–Poisson solutions, for various values of Kn for λ = 0.2. In
Fig. 11, the corresponding current-voltage characteristics are displayed. We recall that the
asymptotic analysis carried out in Sect. 3 assumes that the scaled Debye length is of order
one. Therefore, the present asymptotic expansion is theoretically not applicable to the case
of small λ. In spite of this fact, the asymptotic solutions presented in Figs. 10 and 11 exhibit
good agreements with the corresponding numerical solutions of the Boltzmann–Poisson
system, when φapp/UT is not very large.

5 Conclusion

In this paper, we have considered the flow of electrons induced in a semiconductor between
two parallel plane contacts. The distribution of the electrons is given by the semiconduc-
tor Boltzmann equation with a relaxation-time collision operator of BGK-type. Applying
a Hilbert expansion method and Knudsen-layer corrections to the Boltzmann equation, we
have derived a drift-diffusion system with higher-order boundary conditions improving re-
sults of [11]. The numerical results show a good agreement between the solution of the drift-
diffusion model up to order Kn2 and that of the Boltzmann–Poisson system if the Knudsen
number is not too large and if the Debye length is of the same order as the device length.

The derived drift-diffusion-type equations can be practically used for simulating elec-
tron flows in the lightly doped channel region of n+nn+ diode. For example, let us choose
GaAs at 300 K (permittivity εs = 13.1ε0; effective mass m∗ = 0.0067me) with the doping
concentration given by 10−13 cm−3, as in [19]. A typical value for the mobility is μ = 7500
cm2/V s. This gives the mean free path �0 = 0.12 μm and the Debye length λ0 = 1.2 μm.
Therefore, if the channel length is L = 1.2 μm, the corresponding Knudsen number and the
scaled Debye length are respectively given by Kn = 0.1 and λ = 1.

This is the first step of deriving higher-order boundary conditions for fluid-dynamic
equations for semiconductors. We expect that our results can be improved by consid-
ering more moments in the Boltzmann equation—leading to energy-transport or hy-
drodynamic models—a more general geometry, improved kinetic inflow boundary con-
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ditions [12, 13], or other asymptotic regimes of the semiconductor Boltzmann equation, like
the Child-Langmuir regime [39] and the high-field drift-diffusion approximation [40, 41],
for instance.
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Appendix 1: Mean Flow Velocity and Electron Temperature of the Hilbert Solution

We summarize the Hilbert part of the mean flow velocity,

ûH0 = 0, (66)

ûH1 = −1

2
τ̂

(
d ln ρ̂H0

dx1
+ ÊH0

)
, (67)

ûH2 = −1

2
τ̂

(
ρ̂H1

ρ̂H0

d ln(ρ̂H1/ρ̂H0)

dx1
+ ÊH1

)
, (68)

ûH3 = −1

2
τ̂

[
ρ̂H2

ρ̂H0

d ln(ρ̂H2/ρ̂H0)

dx1
−

(
ρ̂H1

ρ̂H0

)2
d ln(ρ̂H1/ρ̂H0)

dx1
+ ÊH2 − 2ûH1

d

dx1
(τ̂ ÊH0)

]
,

(69)

and of the electron temperature,

T̂H0 = 1, T̂H1 = 0, T̂H2 = −2

3
τ̂ ÊH0ûH1 − 2

3
û2

H1, (70)

T̂H3 = −2

3
τ̂ (ÊH0ûH2 + ÊH1ûH1) − 4

3
ûH1ûH2. (71)

Appendix 2: Comments on the Numerical Solution of the Knudsen-layer Problems

Let us introduce the functions gm(η′, ζy, ζ2, ζ3) (m = 1,2,3,4) which are the solutions of
the following half-space boundary-value problems:

ζy

∂gm

∂η′ = �m − gm + Ihm, (72)

�m(η′) =
∫

gmMd3ζ̄ , (73)

gm = −am +Jm (for ζy > 0, at η′ = 0), (74)

gm → 0 (as η′ → ∞), (75)

with

Ih1 = Ih2 = 0, Ih3 = 1

2

∂g1

∂ζy

− ζyg1, Ih4 = −η′(�1 − ψ1)



340 J Stat Phys (2008) 130: 313–342

and J1 = −2ζy , J2 = 2ζ 2
y , and J3 = J4 = 0. Here, am are constants to be determined to-

gether with the solutions. Then (ξ1,ψ1), (ξ2a,ψ2a), (ξ2b,ψ2b), and (ξ2c,ψ2c) introduced in
the main text [(55) and (56)] are given by

(ξ1,ψ1) = (ξ2a,ψ2a) = (a1, g1), (ξ2b,ψ2b) = (a2 + a3 − 1, g2 + g3),

(ξ2c,ψ2c) = (a4, g4).

Our aim is to obtain the slip coefficients am and the Knudsen-layer functions �m(η′) numer-
ically. In this appendix, we give a brief comment on the numerical method.

By taking advantage of the simple expression of the relaxation-time collision operator,
we can transform the equation and boundary conditions (72–75) to an integral equation
for �m(η′). This is done by integrating (72) formally under the boundary conditions (74)
and (75), inserting the result into (73), and carrying out the integration with respect to the
velocity space. The resulting equation contains only η′ as an independent variable, and thus
the problem simplifies significantly. Moreover, we can avoid the singularity contained in
Ih3 of the original form [note that g1 or, in general, gm has a discontinuity at η′ = 0 with
respect to ζy , i.e. limζy→0+ g1(0, ζy, ζ2, ζ3) �= limζy→0− g1(0, ζy, ζ2, ζ3)].

The integral equations for �1 and �2 are identical with those for the Knudsen-layer
problems of rarefied gas flows around a boundary, derived from the linearized BGK model
of the Boltzmann equation. More precisely, the equations for �1 and �2 are respectively
identical with the equation for the Knudsen layer in shear flow over a flat wall [42–45] and
in thermal-creep flow over a flat wall [46]. The numerical solutions to these equations are
obtained in [25, 26, 43–45] (also see [24, 31, 47]). Concerning the equation for �3, the
same type of integral equation has been solved numerically in [48]. Therefore, we can make
use of the numerical data given in these references. For example, [a1,�1(x)] = [2k0,2Y0(x)]
in [24, 31, 47], [a2,�2(x)] = [1 − 4K1,−2Y1(x)] in [31, 47], and [a3,�3(x)] =
[a2 + 2k2

0 + 8K1,−2Ỹ0(x) + 2k0Y0(x) + 4Y1(x)] in [31]. In the cited works, the integral
equations are solved by means of a moment method devised by Sone [43, 49] and improved
by Sone and Onishi [47, 50]. We employ this method in order to obtain the numerical solu-
tion �4(η

′) and a4 in the present study.
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